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Definition

A spacetime is a 4-dimensional Lorentzian manifold (M, g).
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Definition

A spacetime is a 4-dimensional Lorentzian manifold (M, g). Tangent vectors v
are classified as timelike, null, or spacelike according to whether g(v, v) is
negative, zero, or positive (respectively).
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General relativity

timelike null

hypersurface

spacelike
hypersurface

Definition

A spacetime is a 4-dimensional Lorentzian manifold (M, g). Tangent vectors v
are classified as timelike, null, or spacelike according to whether g(v, v) is
negative, zero, or positive (respectively). Hypersurfaces ¥ C M are spacelike if vx
is timelike, and null if vs is null.
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General relativity
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Remark

Massless radiation (electromagnetic, gravitational,...) travels along null
hypersurfaces
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General relativity

Einstein equations

A Lorentzian manifold (M, g) satisfies the Einstein equations if

. 1
Ric(g)uv — 55cal(g)guy = Tuv, (E)

where T,,,, represents the matter distribution in spacetime. In particular, (M, g)
satisfies the vacuum Einstein equations if

Ric(g)uw = 0. (VE)

v
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General relativity

Einstein equations
A Lorentzian manifold (M, g) satisfies the Einstein equations if
. 1
Ric(g)uv — 55cal(g)guy = Tuv, (E)

where T,,,, represents the matter distribution in spacetime. In particular, (M, g)
satisfies the vacuum Einstein equations if

Ric(g)uw = 0. (VE)

v

Bianchi equations

In a vacuum spacetime, the Bianchi equations for the curvature are

V[a Wg,y](;p =V Wgwsp + Vg Wwa(;p + V,y Wag(;p =0. (B)
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Double null foliation — foliation adapted to radiation
A double null foliation is a choice of two “optical” functions

u,u:M—->R

whose level sets foliate the spacetime in a certain way.
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Double null foliation — foliation adapted to radiation
A double null foliation is a choice of two “optical” functions

u,u:M—->R

whose level sets foliate the spacetime in a certain way. In particular, the level sets
C, of uand C, of u are null hypersurfaces, whose intersections

Suw=CNC,

are spacelike, diffeomorphic to 2-spheres,
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Double null foliation — foliation adapted to radiation
A double null foliation is a choice of two “optical” functions

u,u:M—->R

whose level sets foliate the spacetime in a certain way. In particular, the level sets
C, of uand C, of u are null hypersurfaces, whose intersections

Suw=CNC,

are spacelike, diffeomorphic to 2-spheres, with M d_;:: [0, u.] % [0, u,] x S2.
Irreo
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Double null foliation — foliation adapted to radiation
A double null foliation is a choice of two “optical” functions

u,u:M—->R

whose level sets foliate the spacetime in a certain way. In particular, the level sets
C, of uand C, of u are null hypersurfaces, whose intersections

Suw=CNC,

are spacelike, diffeomorphic to 2-spheres, with M d_;:: [0, u.] % [0, u,] x S2.
Irreo
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Figure: A double null foliation of a spacetime (M, g)
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Double null foliation
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Figure: A double null foliation of a spacetime (M, g)

o We let v =, = gls,, be the (Riemannian) restriction of the spacetime
metric to the spheres S, ,
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Double null foliation

12

. Q() ) Sll,ﬂ

Figure: A double null foliation of a spacetime (M, g)

o We let v =, = gls,, be the (Riemannian) restriction of the spacetime
metric to the spheres S, ,

e Write V for the Levi-Civita connection of (M, g) and V for the Levi-Civita
connection of (S,7)

Christopher Stith (University of Michigan) Hyperbolic systems & DNFs October 2024 7/36



Double null foliation

s

Gy , Suu

Figure: A double null foliation of a spacetime (M, g)

@ Incredibly powerful tool in mathematical GR (stability, singularity formation, more)
[Christodoulou, Klainerman-Nicold, Klainerman-Rodnianski-Luk,
Shlapentokh-Rothman, Taylor, Dafermos-Holzegel-Rodnianski-Taylor,
Oh-Luk-Shlapentokh-Rothman, many others]
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Double null foliation
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Figure: A double null foliation of a spacetime (M, g)

@ Incredibly powerful tool in mathematical GR (stability, singularity formation, more)
[Christodoulou, Klainerman-Nicold, Klainerman-Rodnianski-Luk,
Shlapentokh-Rothman, Taylor, Dafermos-Holzegel-Rodnianski-Taylor,
Oh-Luk-Shlapentokh-Rothman, many others]

@ Well-suited for analysis of radiation (gravitational, electromagnetic,...) which
travels along null hypersurfaces
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Double null foliation
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Figure: A double null foliation of a spacetime (M, g)

@ Incredibly powerful tool in mathematical GR (stability, singularity formation, more)
[Christodoulou, Klainerman-Nicold, Klainerman-Rodnianski-Luk,
Shlapentokh-Rothman, Taylor, Dafermos-Holzegel-Rodnianski-Taylor,
Oh-Luk-Shlapentokh-Rothman, many others]

@ Well-suited for analysis of radiation (gravitational, electromagnetic,...) which
travels along null hypersurfaces

@ Characteristic IVP: prescribe initial data along Co U C,
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Double null foliation

Let &3 = —Vu,e4 = —Vu. These are null vector fields with e3 tangent to C, and
e4 tangent to C,,.

Then let (ea)a=1,2 be a (local) frame field for the S, , sections.
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Double null foliation

Let &3 = —Vu,e4 = —Vu. These are null vector fields with e3 tangent to C, and
e4 tangent to C,,.

B /'Cu
N V2
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Then let (ea)a=1,2 be a (local) frame field for the S, , sections.
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The Weyl tensor W of a spacetime with a double null foliation can be
decomposed into S-tangent tensorfields as follows:
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The Weyl tensor W of a spacetime with a double null foliation can be
decomposed into S-tangent tensorfields as follows:

Q[W]AB - W(eA7e4vere4) Q[W]AB - W(eA,e3,eB,€3)
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Weyl tensor components
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The Weyl tensor W of a spacetime with a double null foliation can be
decomposed into S-tangent tensorfields as follows:

Q[W]AB - W(eA7e4vere4) Q[W]AB = W(eA,e3,eB,€3)
1 1
BIW]a = EW(eA, €, €3, ) BIW]a = EW(% €3, €3, )
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Weyl tensor components
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The Weyl tensor W of a spacetime with a double null foliation can be
decomposed into S-tangent tensorfields as follows:

Q[W]AB - W(eA7e4vere4) Q[W]AB - W(eA,e3,eB,€3)
1 1
BIW]a = EW(eA, €, €3, ) BIW]a = EW(e‘“ €3, €3, )
1 L,
p[W] = ZW(E3,€4,€3,64) U[W] = Z W(e3,e4,e3,e4)
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Weyl tensor components
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The Weyl tensor W of a spacetime with a double null foliation can be
decomposed into S-tangent tensorfields as follows:

Q[W]AB - W(eA7e4vere4) Q[W]AB - W(eA,e3,eB,€3)
1 1
BIW]a = EW(eA, €, €3, ) BIW]a = EW(G‘“ €3, €3, )
1 L,
p[W] = ZW(E‘3,€4,€3,€4) U[W] = Z W(e3,e4,e3,e4)

For any S-tangent tensorfield £, we write Y3&, V4& denote the projections of
Vi€, Va€ (respectively) to S, .
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|
Null Bianchi equations

Decomposing the Bianchi equations for the Weyl tensor,
Via WB’Y](SP =0,

in the null frame (e,)f_;, gives the null Bianchi equations.
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|
Null Bianchi equations
Decomposing the Bianchi equations for the Weyl tensor,
ViaWs15p =0,
in the null frame (e,)f_;, gives the null Bianchi equations.

The null Bianchi equations in schematic form:
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|
Null Bianchi equations
Decomposing the Bianchi equations for the Weyl tensor,
ViaWs15p =0,
in the null frame (e,)f_;, gives the null Bianchi equations.
The null Bianchi equations in schematic form:

VoW[W] = YV[W] + T - w[w] -
VU [W] = YW+ - v[w]

where
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Null Bianchi equations
Decomposing the Bianchi equations for the Weyl tensor,
ViaWs15p =0,
in the null frame (e,)f_;, gives the null Bianchi equations.
The null Bianchi equations in schematic form:

VoW[W] = YV[W] + T - w[w] )
VU [W] = YW+ - v[w]

where

o V[W] e {a[W], B[W], p[W], o[W], B[W], a[W]} are components of the
Weyl curvature tensor W
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|
Null Bianchi equations
Decomposing the Bianchi equations for the Weyl tensor,
ViaWs15p =0,
in the null frame (e,)f_;, gives the null Bianchi equations.

The null Bianchi equations in schematic form:

VsW[W] = PU[W] + T w[W] )
V(W] = FU[W] + T w{W]

where

o V[W] € {a[W], B[W], p[W], o[W], B[W], a[W]} are components of the
Weyl curvature tensor W

o I are the Ricci coefficients (connection coefficients) of the foliation
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|
Null Bianchi equations
Decomposing the Bianchi equations for the Weyl tensor,
ViaWs15p =0,
in the null frame (e,)f_;, gives the null Bianchi equations.

The null Bianchi equations in schematic form:

VsW[W] = PU[W] + T w[W] )
V(W] = FU[W] + T w{W]

where
o V[W] € {a[W], B[W], p[W], o[W], B[W], a[W]} are components of the
Weyl curvature tensor W
o I are the Ricci coefficients (connection coefficients) of the foliation

These can be regarded as propagation equations for the Weyl tensor components
W[W] and are used to obtain LP(S, ,) and LP(C,), LP(C,) estimates on V.
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Goal: Study Einstein equations in a double null foliation
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Null Bianchi equations

Goal: Study Einstein equations in a double null foliation

@ Expressing (VE) in a double null foliation gives the null Bianchi equations
(for the curvature) & null structure equations (for the Ricci coefficients)
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Null Bianchi equations

Goal: Study Einstein equations in a double null foliation

@ Expressing (VE) in a double null foliation gives the null Bianchi equations
(for the curvature) & null structure equations (for the Ricci coefficients)

@ These equations have excellent structure (propagation equations,
hyperbolicity, elliptic equations on S, ;)
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Null Bianchi equations

Goal: Study Einstein equations in a double null foliation

@ Expressing (VE) in a double null foliation gives the null Bianchi equations
(for the curvature) & null structure equations (for the Ricci coefficients)

@ These equations have excellent structure (propagation equations,
hyperbolicity, elliptic equations on S, ;)

@ Even in works which don't explicitly use a double null foliation, null Bianchi
& null structure used widely [Christodoulou-Klainerman, Zipser, Bieri,...]
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BN
Null Bianchi equations

Up to lower-order terms, the null Bianchi equations are:
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BN
Null Bianchi equations

Up to lower-order terms, the null Bianchi equations are:

Vso[W] = Y&B[W] Yap[W] =~ diva[W]
Y3B[W] = Vp[W] + Vo W]
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Null Bianchi equations

Up to lower-order terms, the null Bianchi equations are:

Vso[W] = Y&B[W] Yap[W] =~ diva[W]
Y3B[W] = Vp[W] + Vo W] Ya(plW], o[W]) ~ (divB[W], —cdrlB[W])
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Null Bianchi equations

Up to lower-order terms, the null Bianchi equations are:

Via[W] = Y&B[W] V.B[W] ~ diva[W]

YiB[W] = Vp[W] + Vo W] Va(p[W], o[W]) ~ (divB[W], —cdrlB[W])
Ys(p[W], o[W]) = (—divB[W], —cdrlB[W])
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Null Bianchi equations

Up to lower-order terms, the null Bianchi equations are:

Vso[W] = Y&B[W] ViB[W] = diva[W]
Y3B[W] = Vp[W] + Vo W] Ya(plW], o[W]) ~ (divB[W], —cdrlB[W])
Ys(p[W], o[W]) = (—divB[W], —cdrlB[W]) VaiB[W] = =V p[W]+ " Vo[W]
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Null Bianchi equations

Up to lower-order terms, the null Bianchi equations are:

Vso[W] = Y&B[W] ViB[W] = diva[W]
Y3B[W] = Vp[W] + Vo W] Ya(plW], o[W]) ~ (divB[W], —cdrlB[W])
Ys(p[W], o[W]) = (—divB[W], —cdrlB[W]) VaiB[W] = =V p[W]+ " Vo[W]

V3p[W] ~ —diva[W]
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Null Bianchi equations

Up to lower-order terms, the null Bianchi equations are:

Via[W] = Y&6[W] Y.8[W] ~ diva[W)]

V3BIW] = Yp[W] + " Yo[W] Ya(p[W], o[W]) ~ (divB[W], —cdrl B[ W])
V3(p[W], o[W]) =~ (—divB[W], —cdr 5[ W]) Y.8IW] = —Yp[W] + "Yo[W]

V3B[W] ~ —diva[W] Yia[W] = —~Y&5[W]
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Null Bianchi equations

Up to lower-order terms, the null Bianchi equations are:

Vsa[W] = Y&B[W] Y.8[W] ~ diva[W]

V3B8[W] = Yp[W] + Vo W] Ya(p[W], o[W]) = (divB[W], —cdrlB[W])
V3(p[W], o[W]) = (—divB[W], —cdrl5[W]) YViBIW] ~ =Y p[W] + Vo [W]

V3p[W] ~ —diva[W] Yia[W] = -Y&p[W]

Notation: ¥ is the induced connection on the spheres S, ,,, div is the divergence
operator of S, ,, Y& is the traceless part of the symmetrized covariant derivative,
* denotes the Hodge dual on the S, ,. See [Christodoulou (2008)].
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Null Bianchi equations

Up to lower-order terms, the null Bianchi equations are:

Vsa[W] = Y&B[W] Y.8[W] ~ diva[W]

V3B8[W] = Yp[W] + Vo W] Ya(p[W], o[W]) = (divB[W], —cdrlB[W])
V3(p[W], o[W]) = (—divB[W], —cdrl5[W]) YViBIW] ~ =Y p[W] + Vo [W]

V3p[W] ~ —diva[W] Yia[W] = -Y&p[W]

Notation: ¥ is the induced connection on the spheres S, ,,, div is the divergence
operator of S, ,, Y& is the traceless part of the symmetrized covariant derivative,
* denotes the Hodge dual on the S, ,. See [Christodoulou (2008)].

Key point: Bianchi pairs. The principal part of equations on the right is (minus)
the L2(Su,g)—adjoint of the principal part of the equations on the /eft,
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Null Bianchi equations

Up to lower-order terms, the null Bianchi equations are:

Vsa[W] = Y&B[W] Y.8[W] ~ diva[W]

V3B8[W] = Yp[W] + Vo W] Ya(p[W], o[W]) = (divB[W], —cdrlB[W])
V3(p[W], o[W]) = (—divB[W], —cdrl5[W]) YViBIW] ~ =Y p[W] + Vo [W]

V3p[W] ~ —diva[W] Yia[W] = -Y&p[W]

Notation: ¥ is the induced connection on the spheres S, ,,, div is the divergence
operator of S, ,, Y& is the traceless part of the symmetrized covariant derivative,
* denotes the Hodge dual on the S, ,. See [Christodoulou (2008)].

Key point: Bianchi pairs. The principal part of equations on the right is (minus)
the L2(Su,g)—adjoint of the principal part of the equations on the left, for example

/ ¢ - diva dus,, = —/ V& - a dus,, Vo€ C*(Su,u)-
s”vﬂ Su,ﬂ
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Double null hyperbolic systems

e The L?(S, ,)-adjoint property gives the null Bianchi equations their
hyperbolicity [Taylor (2017)]
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Double null hyperbolic systems

e The L?(S, ,)-adjoint property gives the null Bianchi equations their
hyperbolicity [Taylor (2017)]

@ Idea: extract structure of (B) and study its behavior. For 2N unknowns
{\IJ("),E(’)},N:l, consider the following system (DNH):
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Double null hyperbolic systems

@ The L2(Su7£)—adjoint property gives the null Bianchi equations their
hyperbolicity [Taylor (2017)]

o Idea: extract structure of (B) and study its behavior. For 2N unknowns
{w('),g(')},’."zl, consider the following system (DNH):

Double null hyperbolic system (DNH)

VW) = Puov® + EO g u®) = powd 1 EO (i=1,...,N)

Notation: E(), E() are “lower-order” terms; Dy, Dy are first-order differential

operators on S, , (e.g. div, YV, etc.) which are “Bianchi-paired”, i.e. they are
L2(S, ,)-anti-adjoints of each other:

/S 6 Pyoth dus,, = — /S Dyod-bdus,, Vb.ib€ C(S,).

Christopher Stith (University of Michigan) Hyperbolic systems & DNFs October 2024 14 /36



Double null hyperbolic systems

Double null hyperbolic system (DNH)

VUl = Pyou® + EO y,u0) = pyow® + EO (i=1,...,N)

\/\ T

\ e
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Double null hyperbolic systems

Double null hyperbolic system (DNH)

VUl = Pyou® + EO y,u0) = pyow® + EO (i=1,...,N)

\/\ /\/

\ e

Characteristic IVP: Prescribe initial data \Ilg) along Gy and yg") along C,
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Aside: Bianchi pairing and energy estimates
The Bianchi pairing is essential to obtaining energy estimates for the system.
Define the energy &:

1
E[¥](u, ) ::5/ W2 dps, .

u,u
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Aside: Bianchi pairing and energy estimates

The Bianchi pairing is essential to obtaining energy estimates for the system.
Define the energy &:

1
E[¥](u, ) ::5/ W2 dps, .

u,u

Heuristic computation:

VW] (u, u) = / VYW dus,

SU»H
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Aside: Bianchi pairing and energy estimates

The Bianchi pairing is essential to obtaining energy estimates for the system.
Define the energy &:

1
E[¥](u, ) ::5/ W2 dps, .

u,u

Heuristic computation:

VW] (u, u) = / VYW dus,

SU»H

_ / V- Pyl dus,
Suu
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Aside: Bianchi pairing and energy estimates

The Bianchi pairing is essential to obtaining energy estimates for the system.
Define the energy &:

1
E[¥](u, ) ::5/ W2 dps, .

u,u

Heuristic computation:

VW] (u, u) = / VYW dus,

SU»H

_ / V- Pyl dus,
Suu

= —/ DyV - Vdpus,, + lower order
Suw ¢
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Aside: Bianchi pairing and energy estimates

The Bianchi pairing is essential to obtaining energy estimates for the system.
Define the energy &:

1
E[¥](u, ) ::5/ W2 dps, .

u,u

Heuristic computation:

VW] (u, u) = / VYW dus,

SU»H

= / V.- PyVdpus,,
Suu
= —/ DyV - Vdpus,, + lower order

Su,u

= —/ VAR dus, , + lower order
Suw B
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Aside: Bianchi pairing and energy estimates

The Bianchi pairing is essential to obtaining energy estimates for the system.
Define the energy &:

1
E[¥](u, ) ::5/ W2 dps, .

u,u

Heuristic computation:

VW] (u, u) = / VYW dus,

SU»H

_ / V- Pyl dus,
Suu

= —/ DyV - Vdpus,, + lower order
Suw ¢

= —/ VAR dus, , + lower order
Suw B

= —V.E[V](u, u) + lower order.
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BN
Aside: Bianchi pairing and energy estimates

Integrating
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Aside: Bianchi pairing and energy estimates

Integrating
V3EW](u, u) + V4E[V](u, u) = lower order
gives

Energy estimates for DNH

/ W12 dpuc, +/ |W[> dpc, < Initial Data.
Cu <, B

Christopher Stith (University of Michigan)
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Double null hyperbolic systems

Via[W] ~ Y&B[W] Y.8[W] ~ diva[W]
V3BIW] = Vp[W] + " Yo[W] YVa(p[W], o[W]) = (divB[W], —curl B[W])
Vs(pIW], o[W]) ~ (—divB[W], —cdrlB[W]) Y.8[W] ~ Y p[W] + VoW

~
~
~
~

Vaé[W] ~ —diva[W] VW] —WQA@Q[W]

@ The Bianchi equations a/most form a DNH.
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Double null hyperbolic systems

Via[W] ~ Y&B[W] Y.8[W] ~ diva[W]
V3B[W] = Yp[W] + "Vo[W] Ya(p[W], o[ W]) ~ (divB[W], —cdrl B[W])
V3(p[W], o[W]) ~ (~divB[W], —cdrlB[W]) V.BIW] ~ ~Yp[W] + Vo [W]

~
~
~
~

Vaé[W] ~ —diva[W] VW] —WQA@Q[W]

@ The Bianchi equations a/most form a DNH. Problem: They are
overdetermined as an VP!
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Double null hyperbolic systems

Yia[W] ~ Y&B[W] Y.8[W] = diva[W]

V3B[W] = Yp[W] + "Vo[W] Va(p[W], o[W]) = (divB[W], —cirl B[W])
V3 (p[W], o[W]) ~ (=divB[W], —cir3[W]) VaB[W] = —Vp[W] + " Vo[W]

V3B8IW] ~ —diva[W] VaialW] ~ —Y&E[W]

@ The Bianchi equations a/most form a DNH. Problem: They are
overdetermined as an VP!

o Other than a[W], o[W], each Weyl| tensor component satisfies two
independent equations
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Double null hyperbolic systems

Yia[W] ~ Y&B[W] Y.8[W] = diva[W]

V3B[W] = Yp[W] + "Vo[W] Va(p[W], o[W]) = (divB[W], —cirl B[W])
V3 (p[W], o[W]) ~ (=divB[W], —cir3[W]) VaB[W] = —Vp[W] + " Vo[W]

V3B8IW] ~ —diva[W] Vaa[W] = —Y&B[W]

@ The Bianchi equations a/most form a DNH. Problem: They are
overdetermined as an VP!

o Other than a[W], o[W], each Weyl| tensor component satisfies two
independent equations

@ Fix: choose a subset of the equation to be constraints and the others to be
evolution equations
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Double null hyperbolic systems

Yia[W] ~ Y&B[W] Y.8[W] = diva[W]

V3B[W] = Yp[W] + "Vo[W] Va(p[W], o[W]) = (divB[W], —cirl B[W])
V3(p[W], o[W]) = (—divs[W], —cyrlS[W]) VaiBIW] ~ =V p[W] + Vo W]

V3B8IW] ~ —diva[W] Vaa[W] = —Y&B[W]

@ The Bianchi equations almost form a DNH. Problem: They are
overdetermined as an VP!

o Other than a[W], o[W], each Weyl| tensor component satisfies two
independent equations

@ Fix: choose a subset of the equation to be constraints and the others to be
evolution equations

@ Then hope that under the flow of the remaining equations, these constraints
propagate if satisfied by the initial data (more on this later)
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Linearized Bianchi equations

Fix a background vacuum spacetime (M, g). In (B) replace Weyl tensor
components a[W], B[W], etc. with unknowns «, 3, etc. which are to be solved
for.

Christopher Stith (University of Michigan) Hyperbolic systems & DNFs October 2024 19/36



Linearized Bianchi equations

Fix a background vacuum spacetime (M, g). In (B) replace Weyl tensor

components a[W], B[W], etc. with unknowns «, 3, etc. which are to be solved
for. Get:

Linearized Bianchi equations (LB)

Via=V&B+T -V Y. =diva+T-W¥
YViB=Yp+ Yo+ ¥ Ya(p,0) = (divB, —crlB) +T - W

Vi(p, o) = (_d/(Vﬁ, —CM/HQ) +r-v V4ﬁ =-Yp+ Yo+I-V¥
V3 =—diva+T -V Via=-Y&B+T -V
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Linearized Bianchi equations

Fix a background vacuum spacetime (M, g). In (B) replace Weyl tensor

components a[W], B[W], etc. with unknowns «, 3, etc. which are to be solved
for. Get:

Linearized Bianchi equations (LB)

Via=V&B+T -V Y. =diva+T-W¥
Yi8=Yp+ Yo+TI-V Ya(p,0) = (divB, —crlB) +T - W

Vi(p, o) = (_d/(Vﬁ, —Clﬂlﬂﬁ) +r-v V4ﬁ =-Yp+ Yo+I-V¥
V3 =—diva+T -V Via=-Y&B+T -V

v

@ “Linearized” here refers to the fact that the coefficients I in the equations no
longer depend on unknowns
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Linearized Bianchi equations

Fix a background vacuum spacetime (M, g). In (B) replace Weyl tensor

components a[W], B[W], etc. with unknowns «, 3, etc. which are to be solved
for. Get:

Linearized Bianchi equations (LB)

Via=V&B+T -V Y. =diva+T-W¥
Yi8=Yp+ Yo+TI-V Ya(p,0) = (divB, —crlB) +T - W

Vi(p, o) = (_d/(Vﬁ, —Clﬂ/”ﬁ) +r-v W4@ =-Yp+ Yo+I-V¥
V3 =—diva+T -V Via=-Y&B+T -V

v

@ “Linearized” here refers to the fact that the coefficients I in the equations no
longer depend on unknowns

@ Question: How do we choose which are constraint equations and which are
evolution equations?
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Linearized Bianchi equations: evolution and constraints

@ Question: How do we choose which are constraint equations and which are
evolution equations?
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Linearized Bianchi equations: evolution and constraints

@ Question: How do we choose which are constraint equations and which are
evolution equations?

@ Choose to be “as hyperbolic as possible”
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Linearized Bianchi equations: evolution and constraints

@ Question: How do we choose which are constraint equations and which are
evolution equations?

@ Choose to be “as hyperbolic as possible”

@ Starting point: «, « have only one equation each, so to be well-posed these
must be viewed as evolution equations
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Linearized Bianchi equations: evolution and constraints

Question: How do we choose which are constraint equations and which are
evolution equations?

@ Choose to be “as hyperbolic as possible”

@ Starting point: «a, a have only one equation each, so to be well-posed these
must be viewed as evolution equations

@ Unfortunately, there is no way to choose evolution equations in such a way
that (1) every unknown has a Bianchi-paired evolution equation and (2) the
system is not overdetermined
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Linearized Bianchi equations: evolution and constraints

|Vsa=Y&a+T V] Y4B = diva +T - W
ViB=Vp+ Vo+T ¥ Ya(p,0) = (divB, —cdrlB) + T - W
Y3(p,0) = (—divB3, —cdrlB) + T - W YiB=-Yp+ Yo+ V¥
Y38 = —diva +T- ¥ | Yea=-v&8+T -]
Evolution equations
Vsa = VOB +T-¥ Vo= -YEE4T-V J
Constraint equations J
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Linearized Bianchi equations: evolution and constraints

[Vso=Y86+T-v| V4B = diva+T V|

W3ﬁ:y7p+*va+rw Y74(p,cr) = (CMV,@,—CV{I’L@)-FFW
Yi(p,0) = (—div8, —cdrif) + T - ¥ ViB=-Yp+ "Vo+T ¥

Y38 = —diva+T W | Yea=-v&8+T ]

Evolution equations

Via=Y&3+T -V Vo= -Y&F+T -V
V4B =diva+T -V

Constraint equations J
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Linearized Bianchi equations: evolution and constraints

| Vs0=v88+T- V] | Vuf =diva+T V]

Yi8=Yp+ Vo+T v Ya(p.0) = (divs, —cdrls) + T - v
Vilp,0) = (—div8, —cdrlB) + T - W ViB=-Yp+ "VYo+T -V

Y38 = —diva+T W | Yia=-¥E8+7-v]|

Evolution equations

Vsa=V&3+T -V Via=-Y&B+T -V
V.3 =dva+T W

Constraint equations

V:B=Yp+ Yo+T ¥
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Linearized Bianchi equations: evolution and constraints

[ Vsa=vé&5+T V] | Vb =diva+T v

Vi8=Yp+ Vo+T-v] Valp, o) = (divs, —cuB) + T - W
| Ya(p,0) = (—divg, —ciig) + - | ViB = ~Vo+ Vo +T-¥

Y38 = —diva+T W | Yea=-Y&p+1 v

Evolution equations

Via=V&B+T V¥ Via=-V&B+T -V
ViB =diva+T -V Vs(p,0) = (—div3, —cdrlf) + T - ¥

Constraint equations

ViB=Yp+ Yo+T- -V
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Linearized Bianchi equations: evolution and constraints

| Vsa=v&p+T1 V] Va8 = diva+ W]

(Y38 =Vo+ Yo+l -¥ [ Yalpo) = (divs,—cils) + T ¥ |
‘W3(p,0) = (—divg, —cu’rl@)—l-r-\lf‘ YiB=-Yp+ Yo+l W

Y38 = —diva+T W \%g:—mg”w\

Evolution equations

Via=V&B+T V¥ Via=-V&B+T -V
ViB =diva+T -V Vs(p,0) = (—div3, —cdrlf) + T - ¥

Constraint equations

ViB=Yp+ Yo+T- -V Va(p,0) = (divB, —cdrlB) +T - ¥

Christopher Stith (University of Michigan) Hyperbolic systems & DNFs October 2024 25/36



Linearized Bianchi equations: evolution and constraints

| Via=¥85+T V] (V48 = diva+T v

V3B =Vo+ Vot T v Ya(p,0) = (div, —crp) + T - v |
| Ya(p,0) = (—divB, —cirg) + T - v | \%g: —Wp-i-*Va-‘rF‘\l!‘

V38 = —diva + T ¥ | Yia=-vép+r v

Evolution equations
Via=Y&3+T -V Via=-VRB+T-V
Y. =diva+T- W Yi(p,0) = (—d,(vg, —cu’rlé) +Ir-v
YiB=-Yp+ Yo+T ¥

Constraint equations

VsB=Yp+ Yo+T ¥ Va(p, o) = (divB, —cdrlB) + T - ¥

= yert
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Linearized Bianchi equations: evolution and constraints

\V3a=V7®5+r-w\ \W4B:d1va+r.w\

Y8 =Vo+ Vot T-¥ | | Valp,o) = (divs, —cirlp) + 7w |
‘%(pﬂ) = (—divg, 7cu’rlé)+r-\li‘ ‘%g: —Wp+*Vo+r-w‘

\W3g=—d1vg+r~w |Via=-vép+1 ]

Evolution equations

Via=V&3+T -V YVia=-Y&B+T -V
V.5 =diva+T - W W3(P» o) = (—dlvﬁ, —Cltmé) +r-w
ViB=-Yp+ Vo+T ¥

Constraint equations

YsB8=Yp+ Yo+T ¥ Vi(p,0) = (divB, —cdrlB) + T - ¥
Vi = —diva+T -V

= o - - = e
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Linearized Bianchi equations: evolution and constraints

Evolution equations

V5o =YV&B+T -V

Y. =diva+T -V

Vi(p,o) = (—div3, —cdrlB) +T -V
W4§ =-Yp+ Yo+T ¥
Vaa =-V&B+T -V

Constraint equations
=V3f-Yp— "Yo-T ¥ =0

, Q) == Va4(p,0) — (divB, —cdrlB) =T - ¥ =0
=VY38+diva—T -V =0

<
[ 9 Il

Christopher Stith (University of Michigan) Hyperbolic systems & DNFs October 2024
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Linearized Bianchi equations: evolution and constraints

Evolution equations

Vs =V&RB+T -V

Y. =diva+T -V

Vi(p,o) = (—div3, —cdrlB) +T -V
W4§ Z—W/)—I—*WJ-H--\IJ
Vaa =-V&B+T -V

Constraint equations

Z=V3B-Yp— "Yo-T-V =0
(P, Q) :=Ya4(p,0) — (divB, —cdrl3) — T - ¥ =0
==Y +dva-T-V =0

Remark: A collection of tensor fields ¥ := («, 3, p, 0, 3, ) satisfies (LB) if and
only if it satisfies both the evolution and constraint equations.
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Propagation of constraints

Q@ = 0 preserved by the

@ Question: Are the constraints Z===Z=P

evolution?
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Propagation of constraints

Q@ = 0 preserved by the

@ Question: Are the constraints Z===Z=P

evolution?
@ Answer: No! Not unless additional constraints are satisfied by the

unknowns.
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Hyperbolic systems & DNFs

Christopher Stith (University of Michigan)



Propagation of constraints

@ Question: Are the constraints = = = = P = Q = 0 preserved by the
evolution?

@ Answer: No! Not unless additional constraints are satisfied by the
unknowns.

o Note: the unknowns ¥ = (a, S, p, a, 3, a) belong, at every point p € M, to
the vector space

b = {symmetric traceless} X T;;Su,g xR x R % T;Su,g % {symmetrlc traceless}

2-covariant tensors

2-covariant tensors
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Algebraic constraints

o Note: the unknowns ¥ = (o, 3, p, 0, B, a) belong, at every point p € M, to
the vector space

Vp — {symmetrlc traceless} X 7';\5“7£ X R X R X T;Su,g X {symmetrlc traceless}

2-covariant tensors 2-covariant tensors

Theorem (S.)

Fix a background spacetime (M, g) admitting a double null foliation. There is a
pointwise linear map Lw|p : Vp = TySuu X TySuu X R X R, depending only on
the Weyl tensor of (M, g) such that any solution of (LB) satisfies

LwV =0. (1)

Moreover, if (M, g) is not Minkowski spacetime, then

dimker £y < dim V.

That is, solutions to (LB) must lie in a codimension > 1 subspace of V.
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|
Algebraic constraints

Theorem (S.)

Fix a background spacetime (M, g) admitting a double null foliation. There is a
pointwise linear map w|p : Vp — Ty Suu X Ty Suu X R X R, depending only on
the Weyl tensor of (M, g) such that any solution of (LB) satisfies

LwV =0. (2)

Moreover, if (M, g) is not Minkowski spacetime, then

dimker £y < dim V.

That is, solutions to (LB) must lie in a codimension > 1 subspace of V.

v

If a[W] or a[W] is nonzero, then we can write a basis for the a, o part of ker £yy:

{(0.0) = (W], a[W]),  (a,a) = ("a[W],-"a[W])} 3)
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|
Algebraic constraints

Theorem (S.)

Fix a background spacetime (M, g) admitting a double null foliation. There is a
pointwise linear map w|p : Vp — Ty Suu X Ty Suu X R X R, depending only on
the Weyl tensor of (M, g) such that any solution of (LB) satisfies

LSwV¥ = 0. 2)
Moreover, if (M, g) is not Minkowski spacetime, then

dimker £y < dim V.

That is, solutions to (LB) must lie in a codimension > 1 subspace of V.

v

If a[W] or a[W] is nonzero, then we can write a basis for the a, o part of ker £yy:
{(0.0) = (W], a[W]),  (a,a) = ("a[W],-"a[W])} 3)
Very constrained!
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@ Take derivatives of the constraint quantities =, =, P, and @
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Algebraic constraints: proof idea

@ Take derivatives of the constraint quantities =, =, P, and @

@ Insert expressions from the evolution equations and the null structure
equations for I' of the background spacetime
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Algebraic constraints: proof idea

@ Take derivatives of the constraint quantities =, =, P, and @

@ Insert expressions from the evolution equations and the null structure
equations for I' of the background spacetime

@ Obtain many terms
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Algebraic constraints: proof idea

Va2 = VuVsB +Vadiva +Va(n-a) +2V4((try +w)B)

—n- V&8 2(trx +w)("Vo —
VsVaB  +20V38  —2ViB 42— n)PVaB,

NS

2wE —2wdive ZN(VP - WG’)

4("Vo) =Ya¥p +(2w — try) ¥ ) +22*W3ﬁ +3 'ﬂW:{U —:iyV;w

AR

~YVap —3@+n)Vap X-Vo+ 3texVp

501+ m)divg

Figure: Top-order expansion of ¥,=
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Algebraic constraints: proof idea

V.2 = VaV3B +Vidiva +Vi(n-a) +2V4((trx +w)p)

T NS e

—2w((n+1)-X) @ —-4%Yw-a +BW]-a

vV +3m+n)-Vie  +(Xasn, - XBen, e —XPngeuc +28[W]-a

N

3odiv('R)  —3pdivy  + -

34w — s +ma  +3m+n) - (C—m8B8) +30m+n)- ("X~ pX)
Figure: Lowest-order expansion of ¥ ,=
Christopher Stith (University of Michigan)
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Algebraic constraints: proof idea

o After grouping terms, obtain for every differential constraint =,=, P, Q a
differential equation of the form

V4 [diff. constraint] = {,q jigrms whichare 0 . 1 4 £y W

iff diff. constraints vanish

(or with ¥, replaced with ¥3)
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Algebraic constraints: proof idea

o After grouping terms, obtain for every differential constraint =,=, P, Q a
differential equation of the form

V4 [diff. constraint] = {,q jigrms whichare 0 . 1 4 £y W

iff diff. constraints vanish

(or with ¥, replaced with ¥3)

e (LB) = both the evolution equations and constraint equations hold
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Algebraic constraints: proof idea

o After grouping terms, obtain for every differential constraint =,=, P, Q a
differential equation of the form

V4 [diff. constraint] = {,q jigrms whichare 0 . 1 4 £y W

iff diff. constraints vanish

(or with ¥, replaced with ¥3)
e (LB) = both the evolution equations and constraint equations hold

@ In particular, the left-hand side and the first term on the right-hand side
vanish
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Algebraic constraints: proof idea

o After grouping terms, obtain for every differential constraint =,=, P, Q a
differential equation of the form

V4 [diff. constraint] = {,q jigrms whichare 0 . 1 4 £y W

iff diff. constraints vanish

(or with ¥, replaced with ¥3)
e (LB) = both the evolution equations and constraint equations hold

@ In particular, the left-hand side and the first term on the right-hand side
vanish

@ Therefore £y ¥V =0 ([l
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Algebraic constraints — consequences and further questions

Consequences
@ Solutions to (LB) are more constrained than expected
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Algebraic constraints — consequences and further questions

Consequences

@ Solutions to (LB) are more constrained than expected

@ In addition to the differential constraints (= =0,=Z=0,P =0, Q = 0), these
algebraic constraints £V = 0 must hold
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Algebraic constraints — consequences and further questions

Consequences
@ Solutions to (LB) are more constrained than expected

@ In addition to the differential constraints (= =0,=Z=0,P =0, Q = 0), these
algebraic constraints £V = 0 must hold

e Cannot arbitrarily perturb initial data to (LB)
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Algebraic constraints — consequences and further questions

Consequences
@ Solutions to (LB) are more constrained than expected

@ In addition to the differential constraints (= =0,=Z=0,P =0, Q = 0), these
algebraic constraints £V = 0 must hold

e Cannot arbitrarily perturb initial data to (LB)

Questions
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Algebraic constraints — consequences and further questions

Consequences
@ Solutions to (LB) are more constrained than expected

@ In addition to the differential constraints (= =0,=Z=0,P =0, Q = 0), these
algebraic constraints £V = 0 must hold

e Cannot arbitrarily perturb initial data to (LB)
Questions

o Sufficiency of £y W = 0 for solving (LB)? Propagation of algebraic
constraints?
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Algebraic constraints — consequences and further questions

Consequences
@ Solutions to (LB) are more constrained than expected

@ In addition to the differential constraints (= =0,=Z=0,P =0, Q = 0), these
algebraic constraints £V = 0 must hold

e Cannot arbitrarily perturb initial data to (LB)
Questions

o Sufficiency of £y W = 0 for solving (LB)? Propagation of algebraic
constraints?

@ Physical interpretations of £y,?
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Algebraic constraints — consequences and further questions

Consequences
@ Solutions to (LB) are more constrained than expected

@ In addition to the differential constraints (= =0,=Z=0,P =0, Q = 0), these
algebraic constraints £V = 0 must hold

e Cannot arbitrarily perturb initial data to (LB)
Questions

o Sufficiency of £y W = 0 for solving (LB)? Propagation of algebraic
constraints?

@ Physical interpretations of £y,?

@ Nonlinear analog? Full Einstein equations?
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Algebraic constraints — consequences and further questions

Consequences
@ Solutions to (LB) are more constrained than expected

@ In addition to the differential constraints (= =0,=Z=0,P =0, Q = 0), these
algebraic constraints £y WV = 0 must hold

e Cannot arbitrarily perturb initial data to (LB)
Questions

o Sufficiency of £y W = 0 for solving (LB)? Propagation of algebraic
constraints?

@ Physical interpretations of £y,?

@ Nonlinear analog? Full Einstein equations?

Thank You!
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