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General relativity

Definition

A spacetime is a 4-dimensional Lorentzian manifold (M, g).

Tangent vectors v
are classified as timelike, null, or spacelike according to whether g(v , v) is
negative, zero, or positive (respectively). Hypersurfaces Σ ⊂ M are spacelike if νΣ
is timelike, and null if νΣ is null.
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General relativity

Remark

Massless radiation (electromagnetic, gravitational,...) travels along null
hypersurfaces
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General relativity

Einstein equations

A Lorentzian manifold (M, g) satisfies the Einstein equations if

Ric(g)µν − 1

2
Scal(g)gµν = Tµν , (E)

where Tµν represents the matter distribution in spacetime. In particular, (M, g)
satisfies the vacuum Einstein equations if

Ric(g)µν = 0. (VE)

Bianchi equations

In a vacuum spacetime, the Bianchi equations for the curvature are

∇[αWβγ]δρ := ∇αWβγδρ +∇βWγαδρ +∇γWαβδρ = 0. (B)
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Double null foliation – foliation adapted to radiation
A double null foliation is a choice of two “optical” functions

u, u : M → R

whose level sets foliate the spacetime in a certain way.

In particular, the level sets
Cu of u and C u of u are null hypersurfaces, whose intersections

Su,u := Cu ∩ C u

are spacelike, diffeomorphic to 2-spheres, with M ∼=
diffeo

[0, u∗]× [0, u∗]× S2.

Figure: A double null foliation of a spacetime (M, g)
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Double null foliation

Figure: A double null foliation of a spacetime (M, g)

We let γ = γu,u = g |Su,u be the (Riemannian) restriction of the spacetime
metric to the spheres Su,u

Write ∇ for the Levi-Civita connection of (M, g) and /∇ for the Levi-Civita
connection of (S , γ)
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Double null foliation

Figure: A double null foliation of a spacetime (M, g)

Incredibly powerful tool in mathematical GR (stability, singularity formation, more)
[Christodoulou, Klainerman-Nicolò, Klainerman-Rodnianski-Luk,
Shlapentokh-Rothman, Taylor, Dafermos-Holzegel-Rodnianski-Taylor,
Oh-Luk-Shlapentokh-Rothman, many others]

Well-suited for analysis of radiation (gravitational, electromagnetic,...) which
travels along null hypersurfaces

Characteristic IVP: prescribe initial data along C0 ∪ C 0
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Double null foliation

Let e3 = −∇u, e4 = −∇u. These are null vector fields with e3 tangent to C u and
e4 tangent to Cu.

Cu

C u

e4e3

eA

Then let (eA)A=1,2 be a (local) frame field for the Su,u sections.
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Weyl tensor components

The Weyl tensor W of a spacetime with a double null foliation can be
decomposed into S-tangent tensorfields as follows:

α[W ]AB = W (eA, e4, eB , e4) α[W ]AB = W (eA, e3, eB , e3)

β[W ]A =
1

2
W (eA, e4, e3, e4) β[W ]A =

1

2
W (eA, e3, e3, e4)

ρ[W ] =
1

4
W (e3, e4, e3, e4) σ[W ] =

1

4
∗W (e3, e4, e3, e4)

For any S-tangent tensorfield ξ, we write /∇3ξ, /∇4ξ denote the projections of
∇3ξ,∇4ξ (respectively) to Su,u.
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Null Bianchi equations

Decomposing the Bianchi equations for the Weyl tensor,

∇[αWβγ]δρ = 0,

in the null frame (eµ)
4
µ=1, gives the null Bianchi equations.

The null Bianchi equations in schematic form:

/∇3Ψ[W ] = /∇Ψ[W ] + Γ ·Ψ[W ]

/∇4Ψ[W ] = /∇Ψ[W ] + Γ ·Ψ[W ]
(B)

where

Ψ[W ] ∈ {α[W ], β[W ], ρ[W ], σ[W ], β[W ], α[W ]} are components of the
Weyl curvature tensor W

Γ are the Ricci coefficients (connection coefficients) of the foliation

These can be regarded as propagation equations for the Weyl tensor components
Ψ[W ] and are used to obtain Lp(Su,u) and Lp(Cu), L

p(C u) estimates on Ψ.
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Null Bianchi equations

Goal: Study Einstein equations in a double null foliation

Expressing (VE) in a double null foliation gives the null Bianchi equations
(for the curvature) & null structure equations (for the Ricci coefficients)

These equations have excellent structure (propagation equations,
hyperbolicity, elliptic equations on Su,u)

Even in works which don’t explicitly use a double null foliation, null Bianchi
& null structure used widely [Christodoulou-Klainerman, Zipser, Bieri,...]
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Null Bianchi equations

Up to lower-order terms, the null Bianchi equations are:

/∇3α[W ] ≈ /∇⊗̂β[W ] /∇4β[W ] ≈ /divα[W ]

/∇3β[W ] ≈ /∇ρ[W ] +
∗ /∇σ[W ] /∇4(ρ[W ], σ[W ]) ≈ ( /divβ[W ],− /curlβ[W ])

/∇3(ρ[W ], σ[W ]) ≈ (− /divβ[W ],− /curlβ[W ]) /∇4β[W ] ≈ − /∇ρ[W ] +
∗ /∇σ[W ]

/∇3β[W ] ≈ − /divα[W ] /∇4α[W ] ≈ − /∇⊗̂β[W ]

Notation: /∇ is the induced connection on the spheres Su,u, /div is the divergence
operator of Su,u, /∇⊗̂ is the traceless part of the symmetrized covariant derivative,
∗ denotes the Hodge dual on the Su,u. See [Christodoulou (2008)].

Key point: Bianchi pairs. The principal part of equations on the right is (minus)
the L2(Su,u)-adjoint of the principal part of the equations on the left, for example∫

Su,u

ϕ · /divα dµSu,u = −
∫
Su,u

/∇⊗̂ϕ · α dµSu,u ∀ϕ ∈ C∞(Su,u).

Christopher Stith (University of Michigan) Hyperbolic systems & DNFs October 2024 13 / 36
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Double null hyperbolic systems
The L2(Su,u)-adjoint property gives the null Bianchi equations their
hyperbolicity [Taylor (2017)]

Idea: extract structure of (B) and study its behavior. For 2N unknowns

{Ψ(i),Ψ(i)}Ni=1, consider the following system (DNH):

Double null hyperbolic system (DNH)

/∇3Ψ
(i) = /DΨ(i)Ψ(1) + E (i), /∇4Ψ

(i) = /DΨ(i)Ψ(i) + E (i) (i = 1, . . . ,N)

Notation: E (i),E (i) are “lower-order” terms; /DΨ(i) , /DΨ(i) are first-order differential

operators on Su,u (e.g. /div, /∇, etc.) which are “Bianchi-paired”, i.e. they are
L2(Su,u)-anti-adjoints of each other:∫

Su,u

ϕ · /DΨ(i)ψ dµSu,u = −
∫
Su,u

/DΨ(i)ϕ · ψ dµSu,u ∀ϕ, ψ ∈ C∞(Su,u).
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Aside: Bianchi pairing and energy estimates
The Bianchi pairing is essential to obtaining energy estimates for the system.
Define the energy E :

E [Ψ](u, u) :=
1

2

∫
Su,u

|Ψ|2 dµSu,u .

Heuristic computation:

/∇3E [Ψ](u, u) =

∫
Su,u

Ψ · /∇3Ψ dµSu,u

=

∫
Su,u

Ψ · /DΨΨ dµSu,u

= −
∫
Su,u

/DΨΨ ·Ψ dµSu,u + lower order

= −
∫
Su,u

/∇4Ψ ·Ψ dµSu,u + lower order

= − /∇4E [Ψ](u, u) + lower order.
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Aside: Bianchi pairing and energy estimates

Integrating
/∇3E [Ψ](u, u) + /∇4E [Ψ](u, u) = lower order

gives

Energy estimates for DNH∫
Cu

|Ψ|2 dµCu +

∫
C u

|Ψ|2 dµC u
≲ Initial Data.
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Double null hyperbolic systems

The Bianchi equations almost form a DNH.

Problem: They are
overdetermined as an IVP!

Other than α[W ], α[W ], each Weyl tensor component satisfies two
independent equations

Fix: choose a subset of the equation to be constraints and the others to be
evolution equations

Then hope that under the flow of the remaining equations, these constraints
propagate if satisfied by the initial data (more on this later)
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Then hope that under the flow of the remaining equations, these constraints
propagate if satisfied by the initial data (more on this later)

Christopher Stith (University of Michigan) Hyperbolic systems & DNFs October 2024 18 / 36



Linearized Bianchi equations

Fix a background vacuum spacetime (M, g). In (B) replace Weyl tensor
components α[W ], β[W ], etc. with unknowns α, β, etc. which are to be solved
for.

Get:

Linearized Bianchi equations (LB)

/∇3α = /∇⊗̂β + Γ ·Ψ /∇4β = /divα+ Γ ·Ψ
/∇3β = /∇ρ+ ∗

/∇σ + Γ ·Ψ /∇4(ρ, σ) = ( /divβ,− /curlβ) + Γ ·Ψ
/∇3(ρ, σ) = (− /divβ,− /curlβ) + Γ ·Ψ /∇4β = − /∇ρ+ ∗

/∇σ + Γ ·Ψ
/∇3β = − /divα+ Γ ·Ψ /∇4α = − /∇⊗̂β + Γ ·Ψ

“Linearized” here refers to the fact that the coefficients Γ in the equations no
longer depend on unknowns

Question: How do we choose which are constraint equations and which are
evolution equations?
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Linearized Bianchi equations: evolution and constraints

Question: How do we choose which are constraint equations and which are
evolution equations?

Choose to be “as hyperbolic as possible”

Starting point: α, α have only one equation each, so to be well-posed these
must be viewed as evolution equations

Unfortunately, there is no way to choose evolution equations in such a way
that (1) every unknown has a Bianchi-paired evolution equation and (2) the
system is not overdetermined
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Linearized Bianchi equations: evolution and constraints

/∇3α = /∇⊗̂β + Γ ·Ψ /∇4β = /divα+ Γ ·Ψ

/∇3β = /∇ρ+
∗ /∇σ + Γ ·Ψ /∇4(ρ, σ) = ( /divβ,− /curlβ) + Γ ·Ψ

/∇3(ρ, σ) = (− /divβ,− /curlβ) + Γ ·Ψ /∇4β = − /∇ρ+
∗ /∇σ + Γ ·Ψ

/∇3β = − /divα+ Γ ·Ψ /∇4α = − /∇⊗̂β + Γ ·Ψ

Evolution equations

/∇3α = /∇⊗̂β + Γ ·Ψ /∇4α = − /∇⊗̂β + Γ ·Ψ

Constraint equations
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∗ /∇σ + Γ ·Ψ

Constraint equations
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Linearized Bianchi equations: evolution and constraints

Evolution equations

/∇3α = /∇⊗̂β + Γ ·Ψ
/∇4β = /divα+ Γ ·Ψ
/∇3(ρ, σ) = (− /divβ,− /curlβ) + Γ ·Ψ
/∇4β = − /∇ρ+ ∗

/∇σ + Γ ·Ψ
/∇4α = − /∇⊗̂β + Γ ·Ψ

Constraint equations
Ξ := /∇3β − /∇ρ− ∗

/∇σ − Γ ·Ψ = 0

(P,Q) := /∇4(ρ, σ)− ( /divβ,− /curlβ)− Γ ·Ψ = 0

Ξ := /∇3β + /divα− Γ ·Ψ = 0

Remark: A collection of tensor fields Ψ := (α, β, ρ, σ, β, α) satisfies (LB) if and
only if it satisfies both the evolution and constraint equations.
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Propagation of constraints

Question: Are the constraints Ξ = Ξ = P = Q = 0 preserved by the
evolution?

Answer: No! Not unless additional constraints are satisfied by the
unknowns.

Note: the unknowns Ψ = (α, β, ρ, σ, β, α) belong, at every point p ∈ M, to
the vector space

Vp =
{
symmetric traceless
2-covariant tensors

}
× T ∗

p Su,u × R× R× T ∗
p Su,u ×

{
symmetric traceless
2-covariant tensors

}
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Algebraic constraints
Note: the unknowns Ψ = (α, β, ρ, σ, β, α) belong, at every point p ∈ M, to
the vector space

Vp =
{
symmetric traceless
2-covariant tensors

}
× T ∗

p Su,u × R× R× T ∗
p Su,u ×

{
symmetric traceless
2-covariant tensors

}

Theorem (S.)

Fix a background spacetime (M, g) admitting a double null foliation. There is a
pointwise linear map LW |p : Vp → T ∗

p Su,u × T ∗
p Su,u × R× R, depending only on

the Weyl tensor of (M, g) such that any solution of (LB) satisfies

LWΨ = 0. (1)

Moreover, if (M, g) is not Minkowski spacetime, then

dim kerLW < dimV.

That is, solutions to (LB) must lie in a codimension ≥ 1 subspace of V.
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p Su,u × T ∗
p Su,u × R× R, depending only on

the Weyl tensor of (M, g) such that any solution of (LB) satisfies

LWΨ = 0. (2)

Moreover, if (M, g) is not Minkowski spacetime, then

dim kerLW < dimV.

That is, solutions to (LB) must lie in a codimension ≥ 1 subspace of V.

If α[W ] or α[W ] is nonzero, then we can write a basis for the α, α part of kerLW :{
(α, α) = (α[W ], α[W ]), (α, α) = (∗α[W ],− ∗

α[W ])
}

(3)

Very constrained!
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Algebraic constraints: proof idea

Take derivatives of the constraint quantities Ξ,Ξ,P, and Q

Insert expressions from the evolution equations and the null structure
equations for Γ of the background spacetime

Obtain many terms
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Algebraic constraints: proof idea

Figure: Top-order expansion of /∇4Ξ
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Algebraic constraints: proof idea

Figure: Lowest-order expansion of /∇4Ξ
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Algebraic constraints: proof idea

After grouping terms, obtain for every differential constraint Ξ,Ξ,P,Q a
differential equation of the form

/∇4[diff. constraint] =
{

terms which are 0
iff diff. constraints vanish

}
+ LWΨ

(or with /∇4 replaced with /∇3)

(LB) =⇒ both the evolution equations and constraint equations hold

In particular, the left-hand side and the first term on the right-hand side
vanish

Therefore LWΨ = 0 □
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Algebraic constraints – consequences and further questions

Consequences

Solutions to (LB) are more constrained than expected

In addition to the differential constraints (Ξ = 0,Ξ = 0,P = 0,Q = 0), these
algebraic constraints LWΨ = 0 must hold

Cannot arbitrarily perturb initial data to (LB)

Questions

Sufficiency of LWΨ = 0 for solving (LB)? Propagation of algebraic
constraints?

Physical interpretations of LW ?

Nonlinear analog? Full Einstein equations?

Thank You!

Christopher Stith (University of Michigan) Hyperbolic systems & DNFs October 2024 36 / 36



Algebraic constraints – consequences and further questions

Consequences

Solutions to (LB) are more constrained than expected

In addition to the differential constraints (Ξ = 0,Ξ = 0,P = 0,Q = 0), these
algebraic constraints LWΨ = 0 must hold

Cannot arbitrarily perturb initial data to (LB)

Questions

Sufficiency of LWΨ = 0 for solving (LB)? Propagation of algebraic
constraints?

Physical interpretations of LW ?

Nonlinear analog? Full Einstein equations?

Thank You!

Christopher Stith (University of Michigan) Hyperbolic systems & DNFs October 2024 36 / 36



Algebraic constraints – consequences and further questions

Consequences

Solutions to (LB) are more constrained than expected

In addition to the differential constraints (Ξ = 0,Ξ = 0,P = 0,Q = 0), these
algebraic constraints LWΨ = 0 must hold

Cannot arbitrarily perturb initial data to (LB)

Questions

Sufficiency of LWΨ = 0 for solving (LB)? Propagation of algebraic
constraints?

Physical interpretations of LW ?

Nonlinear analog? Full Einstein equations?

Thank You!

Christopher Stith (University of Michigan) Hyperbolic systems & DNFs October 2024 36 / 36



Algebraic constraints – consequences and further questions

Consequences

Solutions to (LB) are more constrained than expected

In addition to the differential constraints (Ξ = 0,Ξ = 0,P = 0,Q = 0), these
algebraic constraints LWΨ = 0 must hold

Cannot arbitrarily perturb initial data to (LB)

Questions

Sufficiency of LWΨ = 0 for solving (LB)? Propagation of algebraic
constraints?

Physical interpretations of LW ?

Nonlinear analog? Full Einstein equations?

Thank You!

Christopher Stith (University of Michigan) Hyperbolic systems & DNFs October 2024 36 / 36



Algebraic constraints – consequences and further questions

Consequences

Solutions to (LB) are more constrained than expected

In addition to the differential constraints (Ξ = 0,Ξ = 0,P = 0,Q = 0), these
algebraic constraints LWΨ = 0 must hold

Cannot arbitrarily perturb initial data to (LB)

Questions

Sufficiency of LWΨ = 0 for solving (LB)? Propagation of algebraic
constraints?

Physical interpretations of LW ?

Nonlinear analog? Full Einstein equations?

Thank You!

Christopher Stith (University of Michigan) Hyperbolic systems & DNFs October 2024 36 / 36



Algebraic constraints – consequences and further questions

Consequences

Solutions to (LB) are more constrained than expected

In addition to the differential constraints (Ξ = 0,Ξ = 0,P = 0,Q = 0), these
algebraic constraints LWΨ = 0 must hold

Cannot arbitrarily perturb initial data to (LB)

Questions

Sufficiency of LWΨ = 0 for solving (LB)? Propagation of algebraic
constraints?

Physical interpretations of LW ?

Nonlinear analog? Full Einstein equations?

Thank You!

Christopher Stith (University of Michigan) Hyperbolic systems & DNFs October 2024 36 / 36



Algebraic constraints – consequences and further questions

Consequences

Solutions to (LB) are more constrained than expected

In addition to the differential constraints (Ξ = 0,Ξ = 0,P = 0,Q = 0), these
algebraic constraints LWΨ = 0 must hold

Cannot arbitrarily perturb initial data to (LB)

Questions

Sufficiency of LWΨ = 0 for solving (LB)? Propagation of algebraic
constraints?

Physical interpretations of LW ?

Nonlinear analog? Full Einstein equations?

Thank You!

Christopher Stith (University of Michigan) Hyperbolic systems & DNFs October 2024 36 / 36



Algebraic constraints – consequences and further questions

Consequences

Solutions to (LB) are more constrained than expected

In addition to the differential constraints (Ξ = 0,Ξ = 0,P = 0,Q = 0), these
algebraic constraints LWΨ = 0 must hold

Cannot arbitrarily perturb initial data to (LB)

Questions

Sufficiency of LWΨ = 0 for solving (LB)? Propagation of algebraic
constraints?

Physical interpretations of LW ?

Nonlinear analog? Full Einstein equations?

Thank You!

Christopher Stith (University of Michigan) Hyperbolic systems & DNFs October 2024 36 / 36



Algebraic constraints – consequences and further questions

Consequences

Solutions to (LB) are more constrained than expected

In addition to the differential constraints (Ξ = 0,Ξ = 0,P = 0,Q = 0), these
algebraic constraints LWΨ = 0 must hold

Cannot arbitrarily perturb initial data to (LB)

Questions

Sufficiency of LWΨ = 0 for solving (LB)? Propagation of algebraic
constraints?

Physical interpretations of LW ?

Nonlinear analog? Full Einstein equations?

Thank You!

Christopher Stith (University of Michigan) Hyperbolic systems & DNFs October 2024 36 / 36


